

ПЕРЕКАЧИВАЮЩИЙ **КОНДЕНСАТООТВОДЧИК**

POWERTRAP®

из чугуна из стали

модель **GT10**

МЕХАНИЧЕСКИЙ НАСОС-КОНДЕНСАТООТВОДЧИК ДЛЯ ОТВОДА И ПЕРЕКАЧИВАНИЯ

Особенности

Перекачивающий конденсатоотводчик широкого применения: отвод конденсата от теплообменников, расширителей, закрытых конденсатных ресиверов турбин низкого давления и абсорбционных чиллеров, часто находящихся под вакуумом.

- Перекачивание конденсата с высокой температурой без кавитации.
- Не требуется электропитание и средства регулирования уровня, следовательно устройство ВЗРЫВОБЕЗОПАСНОЕ.
- Насос может работать с низким уровнем наполнения (подпора).
- Надежная пружина из никелевого сплава.
- Простой доступ к механизму без необходимости демонтажа насоса с трубопроводов, за счет этого снижается стоимость обслуживания
- Внутренние детали из высококачественной нержавеющей стали обеспечивают надежность.

Основные характеристики

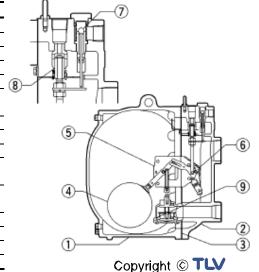
Модель		GT10			
Материал корпуса		Чугун	Ст	аль	
Присоединение	Вход перекачиваемой среды & Выход	Резьбовое	Резьбовое	Фланцевое	
	Движущая среда & Вентиляция	Резьбовое	Резьбовое	Фланцевое	
Размер	Вход перекачиваемой среды & Выход	3" / 2"		DN50/50, 80/50	
	Движущая среда	1"		DN25	
	Вентиляция	1"		DN25	
Максимальное рабочее давление (бар изб.) РМО		10,5			
Максимальная рабочая температура (°C) ТМО		185			
Диапазон давления движущей среды (бар изб.)		0,3 – 10,5			
Максимальное допустимое противодавление		на 0,5 бар меньше, чем давление движущей среды			
Объем перекачивания за один цикл (литр)		приблизительно 30			
Движущая среда **		Пар, сжатый воздух, азот			
Перекачиваемая среда ***		Конденсат водяного пара, вода			

^{*} исключая токсичные, горючие и прочие опасные среды

1 бар=0,1МПа

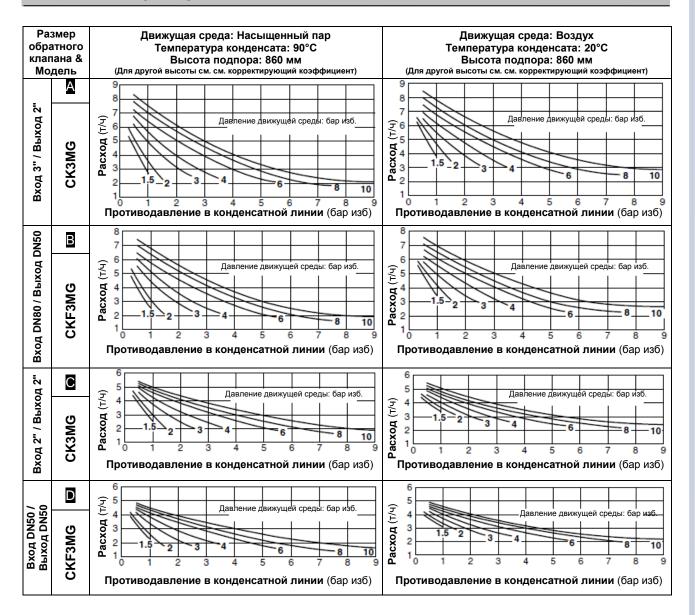
** исключая жидкости с удельной вязкостью менее 0,85 или более 1 или токсичные, горючие и прочие опасные жидкости. КРИТИЧЕСКИЕ ПАРАМЕТРЫ КОРПУСА (НЕ РАБОЧИЕ ПАРАМЕТРЫ): Максимальное давление (бар изб) РМА: 13 (чугун), 16 (сталь)

Максимальная допустимая температура (°C) ТМА: 200 (чугун), 220 (сталь)



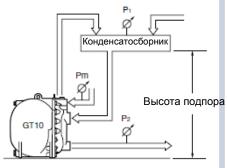
Для нормальной работы, исключения травм и несчастных случаев, не допускается использовать устройство при значениях рабочих параметров, не входящих в диапазоны, указанные в настоящих технических характеристиках. Региональные нормы и правила могут также ограничивать применение устройства в определенных пределах.

Nº	Название детали		Материал	DIN*	ASTM/AISI*	
	1 Корпус		Чугун FC250	0.6025	A126 CI.B	
1			Сталь** A216 Gr.WCB	1.0619	-	
	2 ГКрышка – Н		Чугун FC250	0.6025	A126 CI.B	
			Сталь** A216 Gr.WCB	1.0619	=	
3	Уплотнение крышки		Графит		-	
4 Поплавок	Поппарок		Нерж. сталь SUS316L/303	1.4404/	AISI316L/	
	TIOTHABUK		перж. сталь эсээтоц/эсэ	1.4305	303	
5	Рычажный механизм		Нержавеющая сталь	-	-	
6	Переключающий механизм		Нержавеющая сталь	-	-	
	Механизм клапана движущей среды	Клапан	Нерж. сталь SUS303C/440	1.4305/1.4125	AISI303/440C	
7		Седло	Нерж. сталь A351 Gr.CF8/	1.4312/	- / AISI440C	
Д			Нерж. сталь SUS440C	1.4125		
	Механизм клапана	Клапан	Нерж. сталь SUS303C/440	1.4305/	AISI303/	
8		Манан	перж. сталь эоээоэс/440	1.4125	440C	
	вентиляции	Седло	Нерж. сталь SUS420F	1.4028	AISI42F	
9	Конденсатоотводчик		Нерж. сталь	-	-	
10	Обратный клапан СК3МG		Нерж. сталь A351 Gr.CF8	1.4312	-	
10	Обратный клапан*** CKF3MG		Нерж. сталь A351 Gr.CF8	1.4312	-	


^{*} эквивалентные материалы ** Опция: нерж. сталь

^{***} не показано, модель зависит от присоединения GT10; CK3MG для резьбового, CKF3MG для фланцевого

Расходные характеристики

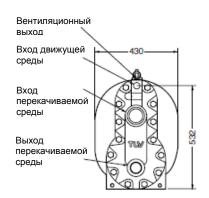


• Корректирующие коэффициенты (если высота подпора отличается от 860 мм)

1500 Для расхода по Для расхода по 1500 графикам 🛚 & 🖪 графикам 🖸 & 🖸 1400 (минимальная (минимальная 1300 высота подпора: 1300 высота подпора: 710 мм) 710 мм) 1200 Высота подпора 1200 1100 1100 1000 1000 Высота 860 800 800 710 ПРИМЕЧАНИЯ:

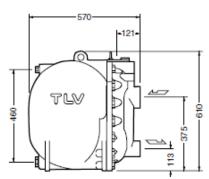
- Обратные клапаны должны быть установлены на входе конденсата в устройство и на выходе.
 Приведенная пропускная способность GT10 соответствует комплектации насоса с обратными клапанами TLV СКЗМG или СКЗFMG.
- Давление движущей среды минус противодавление должно быть больше, чем 0,5 бар.
- В закрытых системах, движущая среда должна быть совместима с перекачиваемой средой. Если в качестве движущей среды используется азот, для правильного подбора насоса необходимо обратится в TLV или к локальному дистрибьютору TLV.
- На линии подачи движущей среды и входе конденсата должны быть установлены фильтры грубой очистки

• Высота подпора и давления

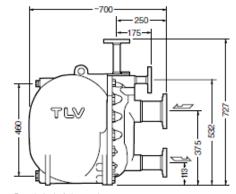


Расход, который обеспечивает насос, рассчитывается исходя из типа движущей среды, давления движущей среды (Pm), и противодавления в конденсатной линии (P_2).

Необходимо, чтобы выполнялись следующие условия:


Расход X Корректирующий фактор > Требуемый расход

Габаритные размеры

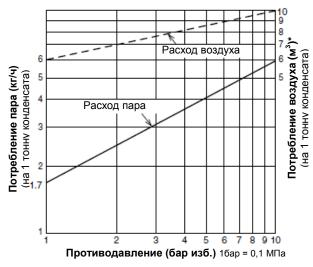

Единицы измерения: мм

• Резьбовой *

Вес (кг): 127 (чугун), 139 (сталь) * BSP DIN 2999, другие стандарты по запросу

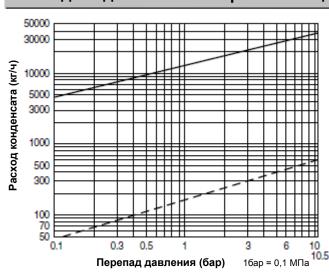
• Фланцевый **

Вес (кг): 149 (сталь) * BSP DIN 2501, PN25/40, ASME Класс 150 RF, другие стандарты по запросу


Расчет конденсатосборника (резервуара)

Объем конденсатосборника должен быть достаточным для накапливания конденсата во время цикла перекачивания насоса Ромектвар.

Размер резервуара (нет пара вторичного вскипания)


Расход конденсата	Диаметр резервуара (мм) и длина (мм)						
(кг/ч)	40	50	80	100	150	200	250
300	1.2m	0.7					
400	1.5	1.0					
500	2.0	1.2	0.5				
600		1.5	0.6				
800		2.0	0.8	0.5			
1000			1.0	0.7			
1500			1.5	1.0			
2000			2.0	1.3	0.6		
3000				2.0	0.9	0.5	
4000					1.2	0.7	
5000					1.4	0.8	0.5
6000					1.7	1.0	0.6
7000					2.0	1.2	0.7
8000						1.3	0.8
9000						1.5	0.9
10000						1.7	1.0

Потребление пара / сжатого воздуха (движущей среды)

* Эквивалентный расход воздуха при стандартных условиях (при 20°C и атмосферном давлении)

Расход конденсата GT10 в режиме конденсатоотводчика

- : расход GT10 в режиме конденсатоотводчика ($P_1 > P_2$). Мгновенная нагрузка по конденсату выше номинальной мощности конденсатоотводчика, приводит к тому, что насоса будет работать циклами,
- поэтому производительность станет ниже.

 ———— : требуемый минимальный расход конденсата для исключения проскока пара.
- Расходы соответствуют температуре конденсата на 6°C ниже температуры насыщения.
- Перепад давления это разница между давлением на перед конденсатоотводчиком и за ним.

Consulting & Engineering Service

Для заметок:

Документ подготовлен официальным дистрибьютором TLV:

Компания: ООО "Паровые системы" Адрес: г. Санкт-Петербург, ул. Курская, 27 Телефон / Факс: +7 812 655 08 95 / +7 812 655 08 96

www.steamsys.ru, паровыесистемы.рф

Manufacturer

Оригинальная версия документа на английском языке опубликована на сайте компании TLV <u>www.tlv.com</u>