

модель **GT10L** из чугуна из стали

МЕХАНИЧЕСКИЙ НАСОС-КОНДЕНСАТООТВОДЧИК ДЛЯ ОТВОДА И ПЕРЕКАЧИВАНИЯ

Особенности

Перекачивающий конденсатоотводчик применения: отвод конденсата от теплообменников, систем утилизации пара вторичного вскипания, резервуаров, часто находящихся под вакуумом.

- Перекачивание конденсата с высокой температурой без кавитации.
- Не требуется электропитание и средства регулирования уровня, следовательно устройство ВЗРЫВОБЕЗОПАСНОЕ.
- Насос может работать с низким уровнем наполнения (подпора).
- Надежная пружина из никелевого сплава.
- Простой доступ к механизму без необходимости демонтажа насоса с трубопроводов, за счет этого снижается стоимость обслуживания
- Внутренние детали из высококачественной нержавеющей обеспечивают надежность.
- Компактный дизайн позволяет быть установленным на ограниченных площадях.

Основные характеристики

Модель	Модель		GT10L		
Присоединение	Вход перекачиваемой среды & Выход	Резьбовое BSP DIN 2999 ¹⁾	Резьбовое BSP DIN 2999 ¹⁾ / Фланцевое DIN2501 ¹⁾		
•	Движущая среда & Вентиляция	Резьбовое BSP DIN 2999 ¹⁾			
	Вход перекачиваемой среды & Выход	1½" x 1"	1" / DN25 x 1" / DN25		
Размер	Движущая среда	1/2"			
	Вентиляция	1/2"			
Максимальное раб	очее давление (бар изб.) РМО	10,5			
Максимальная раб	очая температура (°C) ТМО	185			
Диапазон давления	я движущей среды (бар изб.)	0,3 – 10,5			
Максимальное допустимое противодавление		на 0,5 бар меньше, чем давление движущей сред			
	бъем перекачивания за один цикл (литр) приблизительно 6		близительно 6		
Движущая среда ³⁾		Пар, сжатый воздух, азот			
Перекачиваемая среда ⁴⁾		Конденсат водяного пара, вода			

1) Другие стандарты по запросу 2) PN10, 16 (стальной также PN25), детализация фланцев см. ниже.

1 бар=0,1МПа

3) Не допускается применять токсичные, горючие и прочие опасные среды.

4) Не допускается применять жидкости с удельной вязкостью менее 0,85 или более 1 или токсичные, горючие и прочие опасные жидкости. КРИТИЧЕСКИЕ ПАРАМЕТРЫ КОРПУСА (**HE** PAБОЧИЕ ПАРАМЕТРЫ):

Максимальное давление (бар изб) РМА: 13 (чугун), 21 (сталь)

Максимальная допустимая температура (°C) ТМА: 200 (чугун), 220 (сталь)

Для нормальной работы, исключения травм и несчастных случаев,

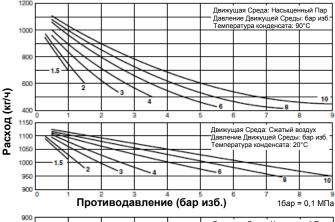
не допускается использовать устройство при значениях рабочих параметров, не входящих в диапазоны, указанные в настоящих технических характеристиках

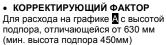
Региональные нормы и правила могут также ограничивать применение

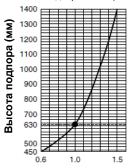
устройства в определенных пределах.

Nº	Название детали		Материал	DIN*	ASTM/AISI*
	Kanana		Чугун FC250	0.6025	A126 CI.B
1	Корпус		Сталь** A216 Gr.WCB	1.0619	-
	Крышка		Чугун FC250	0.6025	A126 CI.B
2			Сталь** A216 Gr.WCB	1.0619	-
3	Уплотнение крышки		Графит	ı.	-
4	Поплавок		Нерж. сталь SUS316L/304	1.4404/	AISI316L/
4				1.4301	304
5	Переключающий механизм		Нержавеющая сталь	ı.	-
7	Механизм клапана	Клапан	Нерж. сталь SUS440C	1.4125	AISI440C
	движущей среды	Седло	Нерж. сталь SUS440C	1.4125	AISI440C
8	Механизм клапана	Клапан	Нерж. сталь SUS440C	1.4125	AISI440C
	вентиляции Седло		Нерж. сталь SUS420F	1.4028	AISI42F
9	Конденсатоотводчик		Нерж. сталь	-	-
10	Обратный клапан	CK3MG	Нерж. сталь A351 Gr.CF8	1.4312	-
10	Обратный клапан*** CKF3M		Нерж. сталь A351 Gr.CF8	1.4312	-

^{*} эквивалентные материалы ** Опция: нерж. сталь

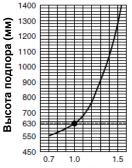




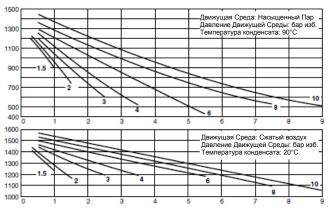

Consulting & Engineering Service

Расходные характеристики

Присоединение: Резьбовое
Вход: 1"
Выход: 1"
Обратный клапан: CK3MG
Вход: 1"
Выход: 1"
Высота подпора: 630 мм


В

Присоедине	ние: Фланцевое
Вход:	DN25
Выход:	DN25
Обратный кл	апан: CKF3M
Вход:	DN25
Выход:	DN25
Высота подп	ора: 630 мм


КОРРЕКТИРУЮЩИЙ ФАКТОР

Для расхода на графикеВ с высотой подпора, отличающейся от 630 мм (мин. высота подпора 550мм)

С

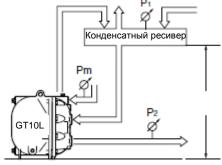
Присоединение:	Резьбовое
Вход:	11/2"
Выход:	1"
Обратный клапа	н: CK3MG
Вход:	11/2"
Выход:	1"
Высота подпора	: 630 мм

КОРРЕКТИРУЮЩИЙ ФАКТОР Для расхода на графике С с высотой подпора, отличающейся от

630 мм (мин. высота подпора 630 м... 450мм) 1400 1300 ₹ 1300 1200 подпора 1100 1000

• Высота подпора и давления

900

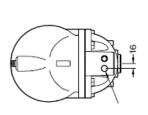

700

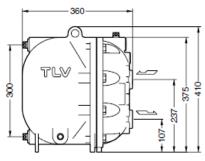
630

Примечания:

- Обратные клапаны должны быть установлены на входє выходе насоса. Обеспечение указанных на диаграммах пропускных способностей достигается только с применением обратных клапанов TLV CK3MG и CKF3N
- Давление движущей среды (Рт) минус противодавлень (P_2) должно быть больше 0,5 бар.
- В закрытых системах, движущая среда должна быть совместима с перекачиваемой средой. Если в качестве движущей среды используется азот, для правильного подбора насоса необходимо обратится в TLV или к локальному дистрибьютору TLV
- На линии подачи движущей среды и входе конденсата должны быть установлены фильтры грубой очистки.

• ВЫСОТА ПОДПОРА И ДАВЛЕНИЯ




Расход, который обеспечивает насос, рассчитывается исходя из типа движущей среды, давления движущей среды (Pm), и противодавления в конденсатной линии (Р2).

Необходимо, чтобы выполнялись следующие условия:

Расход X Корректирующий фактор > Требуемый расход

Габаритные размеры

Вход движущей среды 1/2" BSP

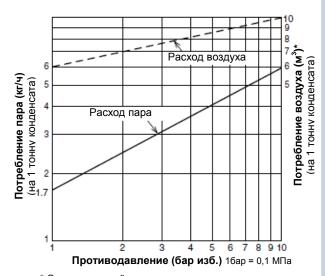
Перекачиваемая среда Вход 1" BSP/DN25 или 11/2" BSP

Перекачиваемая среда Выход 1" BSP/DN25

	вес (кг)
Чугун	46
Сталь	50

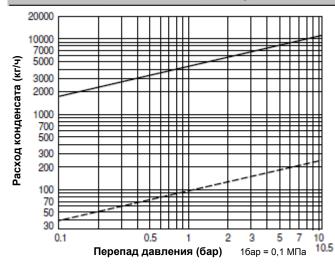
Примечание: все заглушки ½" BSP

Расчет конденсатосборника (резервуара)


Объем конденсатосборника должен быть достаточным для накапливания конденсата во время цикла перекачивания Hacoca PowerTrap

Размер резервуара (нет пара вторичного вскипания)

Расход конденсата	Диаметр резервуара (мм) и длина (мм)						
(кг/ч)	40	50	80	100	150	200	250
300	1.2 m	0.7					
400	1.5	1.0					
500	2.0	1.2	0.5				
600		1.5	0.6				
800		2.0	0.8	0.5			
1000			1.0	0.7			
1500			1.5	1.0			
2000			2.0	1.3	0.6		
3000				2.0	0.9	0.5	
4000					1.2	0.7	
5000					1.4	0.8	0.5
6000					1.7	1.0	0.6
7000					2.0	1.2	0.7
8000						1.3	0.8
9000						1.5	0.9
10000						1.7	1.0


Длина резервуара может быть уменьшена на 50%, если давление движущей среды (Pm), делённое на противодавление (P_2), больше или равно 2 (когда Pm / $P_2 \ge 2$).

Потребление пара / сжатого воздуха (движущей среды)

* Эквивалентный расход воздуха при стандартных условиях (при 20°C и атмосферном давлении)

Расход конденсата GT10L в режиме конденсатоотводчика

- расход GT10L в режиме конденсатоотводчика (P₁>P₂). Мгновенная нагрузка по конденсату выше номинальной мошности конденсатоотводчика. приводит к тому, что насоса будет работать циклами, поэтому производительность станет ниже.
- : требуемый минимальный расход конденсата для исключения проскока пара.
- Расходы соответствуют температуре конденсата на 6°C ниже температуры насыщения. Перепад давления – это разница между давлением на
- перед конденсатоотводчиком и за ним.

Consulting & Engineering Service

Для заметок:

Документ подготовлен официальным дистрибьютором TLV:

Компания: ООО "Паровые системы" Адрес: г. Санкт-Петербург, ул. Курская, 27 Телефон / Факс: +7 812 655 08 95 / +7 812 655 08 96

www.steamsys.ru / паровыесистемы.рф

Manufacturer

is approved by LRQA Ltd, to ISO 9001/14001

Оригинальная версия документа на английском языке опубликована на сайте компании TLV <u>www.tlv.com</u>

ISO 9001/ISO 14001