

POWERTRAP ®

модель **GT5C** из чугуна

ИЗ ЧУГУНА ИЗ НЕРЖАВЕЮЩЕЙ СТАЛИ

КОМПАКТНЫЙ МЕХАНИЧЕСКИЙ НАСОС С КОНДЕНСАТООТВОДЧИКОМ ДЛЯ ЭФФЕКТИВНОГОГО ПРЕДОТВРАЩЕНИЯ ПОДТАПЛИВАНИЯ ТЕПЛООБМЕННИКОВ

Особенности

Насос конденсатоотводчик со встроенным конденсатоотводчиком и линейным расположением входа/выхода, с низкой высотой заполнения, имеет простую обвязку, предназначен для небольших теплообменников и паровоздушных калориферов, работа которых может сопровождаться подтоплением.

- Удобен для перекачивания конденсата с высокой температурой без кавитации.
- 2. Не требуется электропитание и средства регулирования уровня, следовательно устройство ВЗРЫВОБЕЗОПАСНОЕ.
- 3. Насос может работать с очень низким уровнем наполнения (подпора) 155 мм.
- Трубная обвязка не требует вентиляционной трубы, вход/выход на одной оси значительно уменьшает затраты на монтаж.
- 5. Удобный доступ к внутренним деталям уменьшает затраты на обслуживание.
- 6. Внутренние детали из высококачественной нержавеющей стали обеспечивают надежность.
- Компактная конструкция позволяет располагать устройство на ограниченных площадях.

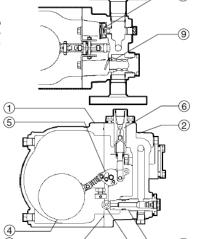
Основные характеристики

Модель	GT5C					
Материал корпуса		Чугун		Нержавеющая сталь		
Присоединение	Вход перекачиваемой среды & Выход	Резьбовое	Фланцевое*	Резьбовое	Фланцевое*	
	Движущая среда & Вентиляция	Резьбовое				
Размер	Вход перекачиваемой среды & Выход	1" / 1"	DN25 / DN25	1" / 1"	DN25 / DN25	
	Движущая среда	1/2"				
	Вентиляция	3/8"				
Максимальное раб	очее давление (бар изб.) РМО	5				
Максимальная раб	185					
Диапазон давления	я движущей среды (бар изб.)	0,3 – 5				
Максимальное доп	устимое противодавление	на 0,5 бар меньше, чем давление движущей среды				
Объем перекачива	ния за один цикл (литр)	приблизительно 1,4				
Движущая среда **	Насыщенный пар					
Перекачиваемая среда ***		Конденсат водяного пара				

* накрученный фланцы

КРИТИЧЕСКИЕ ПАРАМЕТРЫ КОРПУСА (НЕ РАБОЧИЕ ПАРАМЕТРЫ):

Максимальное давление (бар изб) РМА:


Максимальная допустимая температура (°C) ТМА: 200

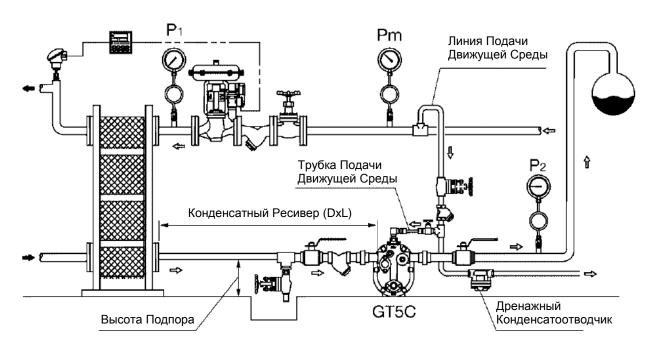
Для нормальной работы, исключения травм и несчастных случаев, не до значениях рабочих параметров, не входящих в диапазоны, указанные в н Региональные нормы и правила могут также ограничивать применение у

Nº	Название детали		Материал	DIN*	ASTM/AISI*
	Корпус		Чугун FC250	1.6025	A126 CI.B
1			Нерж. сталь** A351 Gr.CF8M	1.4312	-
2	Крышка		Чугун FC250	1.6025	A126 CI.B
			Нерж. сталь** A351 Gr.CF8M	1.4312	-
3	Уплотнение крышки		PTFE	PTFE	PTFE
4	Поплавок Переключающий механизм		Нерж. сталь SUS316L	1.4404	AISI316L
5			Нержавеющая сталь	-	-
6	Механизм клапана	Клапан	Нерж. сталь SUS440C	1.4125	AISI440C
	вентиляции	Седло	Нерж. сталь SUS440C	1.4125	AISI440C
7	Конденсатоотводчик (с обратным клапаном) ***		Нерж. сталь SUS420F	1.4028	AISI420F
8	Воздухоотводчик		Нержавеющая сталь	-	-
10	Обратный клапан на входе		Нерж. сталь SUS304	1.4301	AISI304

^{*} эквивалентные материалы

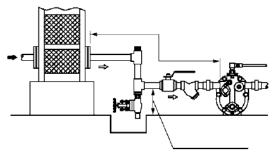
1 бар=0,1МПа

^{**} в модели с корпусом из нерж. стали применены нерж. болты и заглушки

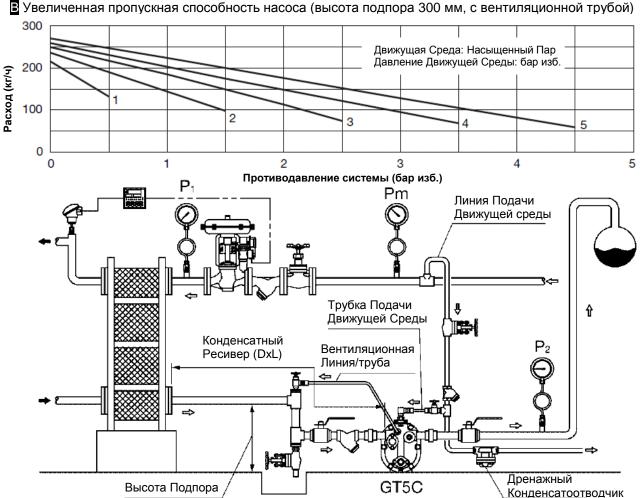

^{***} материал конденсатоотводчика зависит от материала корпуса

Пропускная способность насоса

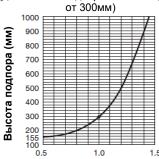
А Стандартная пропускная способность насоса (высота подпора 155 мм, без вентиляционной трубы)



Примечания:


- Воспользовавшись рисунком выше можно определить пропускную способность насоса следует основываясь на давлении движущей среды и давлении в конденсатной линии.
- Давление движущей среды (Pm) минус противодавление (P₂) должно быть больше 0,5 бар.
- Диаметр линии подачи пара должен быть не менее Ду15мм, фитинги, вентиль и трубка подачи пара непосредственно в насос должны иметь внутренний диаметр не менее 8 мм.
- На линиях подачи пара и конденсата должны быть установлены фильтры грубой очистки с ячейкой не менее 40 mesh, а также должен быть предусмотрен дренажный конденсатоотводчик на линии подачи пара.
- Для определения длины L и диаметра D линии подачи перекачиваемой среды (конденсатного ресивера) следует воспользоваться таблицей "Расчет размера ресивера".
- Можно исключить вентиляционную трубу из обвязки насоса в случаях, когда выходное отверстие перекачиваемой среды соединяется с насосом вертикальной трубой (как на рисунке справа). Тем не менее производительность насоса считается как стандартная с высотой заполнения 155 мм.

Вертикальное соединение насоса


Пропускная способность насоса (продолжение)

Примечания:

- Воспользовавшись рисунком выше можно определить пропускную способность насоса следует (для высоты подпора отличающихся основываясь на давлении движущей среды и давлении в конденсатной линии, а также пользуясь корректирующим коэффициентом, если высота подпора отличается от 300 мм.
- Давление движущей среды (Pm) минус противодавление (P2) должно быть больше 0,5 бар.
- Диаметр линии подачи пара должен быть не менее Ду15мм, фитинги, вентиль и трубка подачи пара в насос, также как и вентиляционная линия, должны иметь внутренний диаметр не менее 8 мм
- На линиях подачи пара и конденсата должны быть установлены фильтры грубой очистки с ячейкой не менее 40 mesh, а также должен быть предусмотрен дренажный конденсатоотводчик на линии подачи пара.
- Для определения длины L и диаметра D линии подачи перекачиваемой среды(конденсатного ресивера) следует воспользоваться таблицей "Расчет размера Ресивера".
- При установке вентиляционной линии, следует предусмотреть ее соединение с линией подачи перекачиваемой среды.

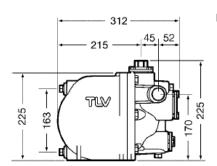
• Корректирующий коэффициент

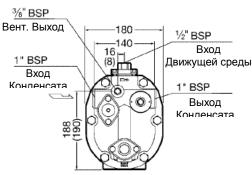
Корректирующий коэффициент (минимальный подпор 155 мм)

Расчет размера ресивера

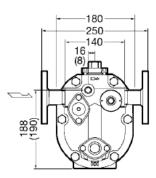
Размер ресивера должен быть достаточным для хранения конденсата, пока PowerTrap находится в цикле перекачивания. Размер ресивера

Расход конденсата (кг/ч)		Диаметр ресивера (мм) и длина (м)					
	25	32	40	50	80		
	50	0.6 m					
	100	1.2	0.6	0.4			
	150	1.8	1.0	0.6	0.4		
	200	2.4	1.3	0.8	0.5		
	300		2.0	1.2	0.7		
	400		2.6	1.5	1.0		

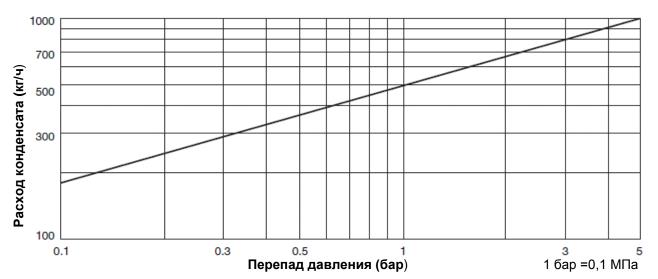

Размер ресивера должен быть уменьшен на 50% когда давление движущей среды (Рт), деленное на противодавление (Р₂), 2 или выше (когда Pm÷P₂ ≥ 2)


Габаритные размеры

• Резьбовой *


• Фланцевый **

Примечание: Все отверстия заглушек 3/8" BSP () для модели из нерж. стали



Вес (кг): 20 (18) * BSP DIN 2999, другие стандарты по запросу

Вес (кг): 23 (21) * DIN 2501 PN16

Пропускная способность в режиме конденсатоотводчика

- Пропускная способность GT5C в режиме конденсатоотводчика (когда давление на входе выше противодавления). Мгновенная нагрузка по конденсату выше номинальной мощности конденсатоотводчика приводит к тому, что насос будет работать циклами и поэтому произойдет уменьшение производительности.
- Расход соответствует температуре конденсата на 6°C ниже температуры насыщения.
- 3. Перепад давления – это разница между давлением перед конденсатоотводчиком и за ним.
- Рекомендуемый коэффициент запаса по пропускной способности не менее 1,5.

НЕ СЛЕДУЕТ применять это устройство при рабочих перепадах давления, превышающих максимальные значения, Это может привести приведет к застою конденсата

Документ подготовлен официальным дистрибьютором TLV:

Компания: ООО "Паровые системы"

Адрес: г. Санкт-Петербург, ул. Курская, 27 Факс: +7 812 655 08 96, телефон: +7 812 602 77 70

www.steamsys.ru / паровыесистемы.рф

Manufacturer

Kakogawa, Japan

is approved by LRQA Ltd. to ISO 9001/14001

Оригинальная версия документа на английском языке опубликована на сайте компании TLV <u>www.tlv.com</u>

ISO 9001/ISO 14001