

КОНДЕНСАТНЫЙ НАСОС

МОДЕЛЬ **GP10F** ИЗ КОВАННОЙ СТАЛИ ИЗ УГЛЕРОДИСТОЙ СТАЛИ

МЕХАНИЧЕСКИЙ НАСОС СО СПЕЦИАЛЬНЫМ МЕХАНИЗМОМ ДЛЯ УДАЛЕНИЯ И ПЕРЕКАЧИВАНИЯ КОНДЕНСАТА

Особенности

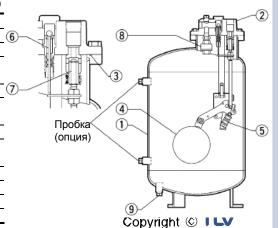
Насос для широкого спектра применения. удаления и перекачивания конденсата из атмосферных конденсатных ресиверов и колодцев.

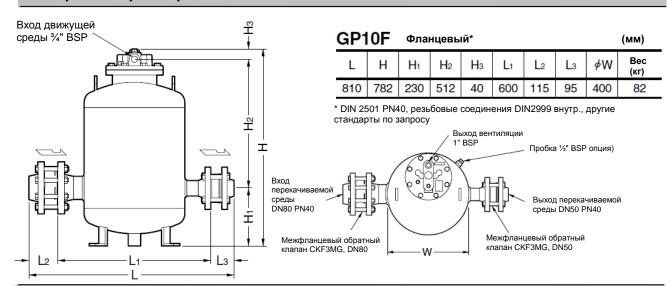
- для перекачивания Удобен конденсата высокой температурой без кавитации.
- Не требуется электропитание и средства регулирования уровня, следовательно устройство ВЗРЫВОБЕЗОПАСНОЕ.
- Насос может работать с низким уровнем наполнения (подпора).
- Надежная пружина из никелевого сплава.
- Весь механизм целиком крепится к крышке насоса и может выниматься вместе с крышкой как одна часть.
- Внутренние детали из высококачественной нержавеющей стали обеспечивают надежность.
- В качестве опции насос может иметь встроенный конденсатоотводчик для дренажа паропровода движущего пара.

Основные характеристики

Модель		GP10F	
Присоединение	Вход перекачиваемой среды & Выход	Фланцевое DIN 2501 PN40*	
	Движущая среда & Вентиляция	Резьбовое BSP DIN 2999*	
Размер	Вход перекачиваемой среды & Выход	DN80 / DN50	
	Движущая среда	3/4"	
	Вентиляция	1"	
Максимальное раб	очее давление (бар изб.) РМО	10,5	
Максимальная рабочая температура (°C) ТМО		220	
Диапазон давления движущей среды (бар изб.)		0,5 – 10,5	
Максимальное допустимое противодавление		на 0,5 бар меньше, чем давление движущей среды	
Объем перекачивания за один цикл (литр)		приблизительно 30	
Движущая среда **		Пар, сжатый воздух, азот	
Перекачиваемая среда ***		Конденсат водяного пара, вода	
· ·	**		

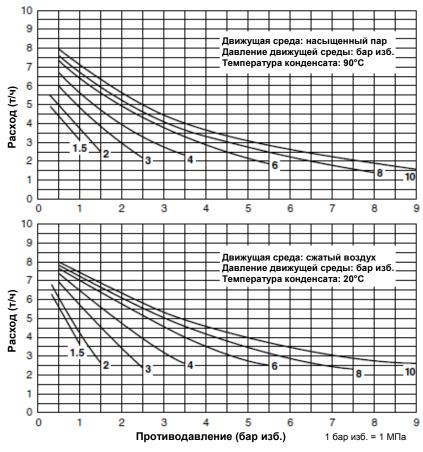
^{*} другие стандарты по запросу ** исключая токсичные, горючие и прочие опасные среды *** исключая жидкости с удельной вязкостью менее 0,85 или более 1 или токсичные, горючие и прочие опасные жидкости


КРИТИЧЕСКИЕ ПАРАМЕТРЫ КОРПУСА (НЕ РАБОЧИЕ ПАРАМЕТРЫ): Максимальное давление (бар изб) РМА: 10,5 1 бар=0,1МПа Максимальная допустимая температура (°C) ТМА: 220


Для нормальной работы, исключения травм и несчастных случаев, не допускается использовать устройство при значениях рабочих параметров, не входящих в диапазоны, указанные в настоящих технических характеристиках. Региональные нормы и правила могут также ограничивать применение устройства в определенных пределах.

Nº	Название детали		Материал	DIN ¹⁾	ASTM/AISI1)
1	Корпус		Углеродистая сталь HII	1.0425	A415 Gr.60
2	Крышка		Кованная сталь A216 Gr.WCB	1.1811	- (
3	Уплотнение крышки		PTFE	PTFE	PTFE
4	Поплавок		Нерж. сталь SUS316L/SUS304	1.4404/ 1.4301	AISI316L/ AISI304
5	Переключающий механизм		Нержавеющая сталь	-	-
6	Механизм клапана	Клапан	Нерж. сталь SUS440C/SUS303	1.4125/ 1.4305	AISI440C/ AISI303
	движущей среды	Седло	Нерж. сталь SUS440C	1.4125	AISI440C
7		Клапан	Нерж. сталь SUS440C/SUS303	1.4125/ 1.4305	AISI440C/ AISI303
	вентиляции	Седло	Нерж. сталь SUS420F	1.4028	AISI42F
8	Дренажная пробка		Углеродистая сталь S25C	1.1158	AISI1025
9	Фланцевая сборка ^{4) 5)}		Углеродистая сталь С22.8	1.0460	A105
10	Обратный клапан ⁵⁾	CKF3MG	Нерж. сталь A351 Gr.CF8	1.4312	-

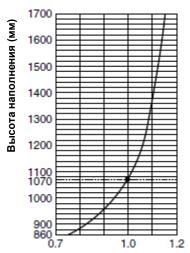
 $[\]overline{}^{1)}$ эквивалентные материалы $\overline{}^{2)}$ Опция: нерж. сталь $\overline{}^{3)}$ Состоит из болтов, гаек, шайб, фланцев, прокладок 4) Изображено на обороте



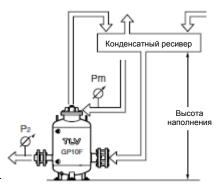
Габаритные размеры

Расходные характеристики

На входе обратный клапан CKF3MG DN80, на выходе обратный клапан CKF3MG DN50, высота заполнения 1070 мм



Примечания:


- Для расчета пропускной способности насоса GP10F в стандартной конфигурации, с обратными клапанами TLV CK3FMG (в комплекте GP10F) на входе и на выходе.
- Давление движущей среды минус противодавление должно быть больше, чем 0,5 бар.
- При применении насоса в закрытых системах, движущая среда должна быть совместима с перекачиваемой средой. В случае использования в качестве движущей среды сжатого воздуха или азота, следует проконсультироваться с региональный представителем TLV
- На входе движущей среды и входе перекачиваемой среды должны быть предусмотрены фильтры грубой очистки.

• **Корректирующий коэффициент** Пример для GP10F с обратным клапаном

Пример для GP10F с обратным клапаном CKF3MG, установленным с высотой наполнения 1070 мм (минимальная высота 860 мм)

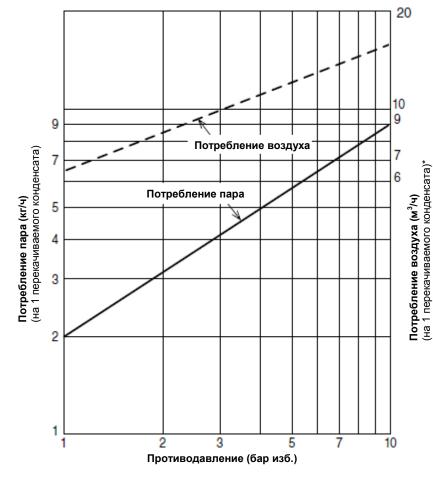
Иллюстрация высоты наполнения и давлений

 Расход зависит от движущей среды, давления движущей среды (Рт) и противодавления (Р₂) Необходимо быть уверенны что: расход х корректирующий коэффициент > требуемого расхода

Расчет размера ресивера

Размер ресивера (открытая система) / резервуара (закрытая система) должен быть достаточным для того, чтобы временно хранить перекачиваемую жидкость во время цикла перекачивания насоса **PowerTrap**. Ресивер должен быть больше, чем резервуара, потому, что в открытой системе при поступлении конденсата высокого давления в открытый ресивер, происходит образование пара вторичного вскипания и ресивер должен иметь возможность отделять одно от другого, чтобы в насос поступал только конденсат.

Размер ресивера (присутствует пар вторичного вскипания) (длина 1 м)


_			
-	25	80	25
	50	100	50
	75	125	50
	100	150	80
	150	200	80
	200	200	100
	300	250	125
_	400	300	125
_	500	350	150
	700	400	200
(3)	800	450	200
	1000	500	200
_	1100	500	250
_	1400	550	250
_	1500	600	250

Если пар вторичного вскипания сконденсировался перед тем как попасть в ресивер/резервуар, следует сравнить полученные результаты из 2-х таблиц и выбрать больший

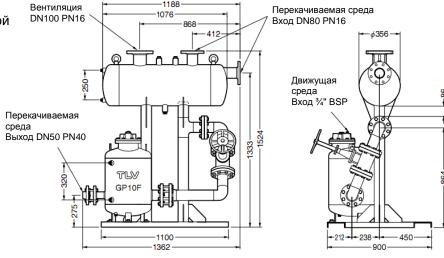
2 Размер резервуара (нет пара вторичного вскипания)

	40	50	80	100	150	200	250
300	1.2 m	0.7					
400	1.5	1.0					
500	2.0	1.2	0.5				
600		1.5	0.6				
800		2.0	8.0	0.5			
1000			1.0	0.7			
1500			1.5	1.0			
2000			2.0	1.3	0.6		
3000				2.0	0.9	0.5	
4000					1.2	0.7	
5000					1.4	0.8	0.5
6000					1.7	1.0	0.6
7000					2.0	1.2	0.7
8000						1.3	0.8
9000						1.5	0.9
10000						1.7	1.0

Резервуар может быть уменьшен на 50%, когда давление движущей среды (Pm), деленное на противодавление (P_2), равно 2 или более (когда $Pm+P_2 \ge 2$)

^{*} эквивалентный расход при стандартных условиях (воздух при 20°C при атмосферном давлении)

Consulting & Engineering Service


Габаритные размеры

Насосная станция с одним насосом

Тип М1

Расход: см. диаграмму пропускной способности (корректирующий коэффициент не используется) Максимальное количество пара вторичного вскипания: 500 кг/ч

Объем бака: 100 л

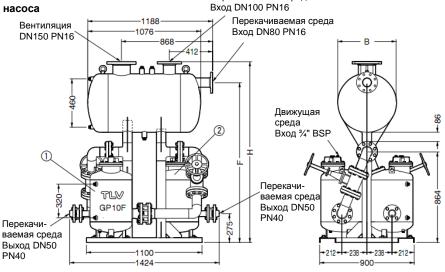
Сдвоенная насосная станция

При малых нагрузках работает один насос Роментар 1.

При увеличении нагрузки, работают оба насоса

Ромектвар 1 и 2 одновременно.

Тип L2


Расход: удвоенная пропускная способность (корректирующий коэффициент не используется) Максимальное количество пара вторичного вскипания: 1000 кг/ч Объем бака: 230 л

Тип Е2

Расход: удвоенная пропускная способность (корректирующий коэффициент не используется) Максимальное количество пара вторичного вскипания: 1500 кг/ч

Объем бака: 330 л

Стандарты: Фланцевые присоединения: DIN 2501 Резьбовые присоединения: DIN 2999 Другие стандарты по запросу Единицы измерения: мм

Перекачиваемая среда

Габаритные размеры

Тип	Н	F	<i>φ</i> B	
L2	1724	1524	560	
E2	1823	1623	660	

Документ подготовлен официальным дистрибьютором TLV:

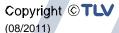
Компания: ООО "Паровые системы"

Адрес: г. Санкт-Петербург, ул. Курская, 27 Факс: +7 812 655 08 96, телефон: +7 812 602 77 70

www.steamsys.ru, паровыесистемы.рф

Manufacturer

Kakogawa, Japan


is approved by LRQA Ltd, to |SO 9001/14001

; I

(R)

Оригинальная версия документа на английском языке опубликована на сайте компании TLV <u>www.tlv.com</u>

ISO 9001/ISO 14001