

модель **GP10** из чугуна из стали

МЕХАНИЧЕСКИЙ НАСОС ДЛЯ УДАЛЕНИЯ И ПЕРЕКАЧИВАНИЯ КОНДЕНСАТА

Особенности

Насос для широкого спектра применений. Идеален для отвода удаления конденсата из атмосферных конденсатных ресиверов и приямков.

- Перекачивание конденсата с высокой температурой без кавитации.
- Не требуется электропитание и средства регулирования уровня, 2. следовательно устройство ВЗРЫВОБЕЗОПАСНОЕ.
- Насос может работать с низким уровнем наполнения (подпора).
- Надежная пружина из никелевого сплава, находящаяся в напряжении в любом режиме.
- Простой доступ к механизму без необходимости демонтажа насоса с трубопроводов, за счет этого снижается стоимость обслуживания
- Внутренние детали из высококачественной нержавеющей стали обеспечивают надежность.

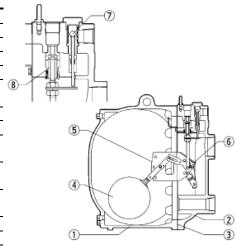
Основные характеристики

Модель		GP10			
Материал корпус	a	Чугун Сталь		аль	
Придосолицоцио	Вход перекачиваемой среды & Выход	Резьбовое	Резьбовое	Фланцевое	
Присоединение	Движущая среда & Вентиляция	Чугун Резьбовое Резьбовое 3" / 2" 1" 1" 10,5 185 0,3 – 10 на 0,5 бар меньше давления движущей приблизите.	Резьбовое	Фланцевое	
	Вход перекачиваемой среды & Выход	3" / 2"	3" / 2"	DN50/50, 80/50	
Размер	Движущая среда	1"	1"	DN25	
	Вентиляция	1"	1"	DN25	
Максимальное рабочее давление (бар изб.) РМО		10,5			
Максимальная рабочая температура (°C) ТМО		185			
Диапазон давлен	пения движущей среды (бар изб.) 0,3 – 10,5				
Максимальное допустимое противодавление		на 0,5 бар меньше давления движущей среды, но не выше 10,5 бар изб.			
Объем перекачивания за один цикл (литр)		приблизительно 30			
Движущая среда *		Насыщенный пар, сжатый воздух, азот			
Перекачиваемая среда **		Конденсат водяного пара, вода			

^{*} исключая токсичные, горючие и прочие опасные среды

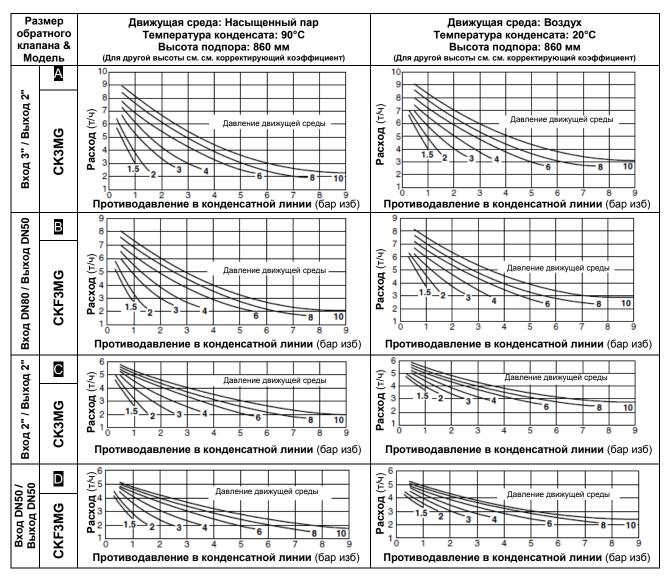
1 бар=0,1МПа

** исключая жидкости с удельной вязкостью менее 0,85 или более 1 или токсичные, горючие и прочие опасные жидкости. КРИТИЧЕСКИЕ ПАРАМЕТРЫ КОРПУСА (**НЕ** РАБОЧИЕ ПАРАМЕТРЫ): Максимальное давление (бар изб) РМА: 13 (чугун), 16 (сталь)



ВНИМАНИЕ

Максимальная допустимая температура (°C) ТМА: 200 (чугун), 220 (сталь) Для нормальной работы, исключения травм и несчастных случаев, не допускается использовать устройство при значениях рабочих параметров, не входящих в диапазоны, указанные в настоящих технических характеристиках. Региональные нормы и правила могут также ограничивать применение устройства в определенных пределах.


Nº	Название детали		Материал	DIN*	ASTM/AISI*
	4 1/2		Чугун FC250	0.6025	A126 CI.B
1	Корпус		Сталь** A216 Gr.WCB	1.0619	-
_	Крышка		Чугун FC250	0.6025	A126 CI.B
2			Сталь** A216 Gr.WCB	1.0619	-
3	Уплотнение крышки		Графит	-	-
4	4 8		OLICATOL /202	1.4404/	AISI316L/
4 1100	Поплавок		Нерж. сталь SUS316L/303	1.4305	303
5	Рычажный механизм		Нержавеющая сталь	-	-
6	Переключающий механизм		Нержавеющая сталь	-	-
		Клапан	Нерж. сталь SUS303C/440	1.4305/	AISI303/440C
7 Mexai	Механизм клапана	Midilah	нерж. сталь 303303С/440	1.4125	
′	движущей среды	ижущей среды Седло Нерж. сталь A351 Gr.CF8/ Нерж. сталь SUS440C	Нерж. сталь A351 Gr.CF8/	1.4312/	- / AISI440C
			Нерж. сталь SUS440C	1.4125	
	Mayauway waaaa	Клапан	Henry 2727 SH2202C/440	1.4305/	AISI303/
8	Механизм клапана	клапан перж.	Нерж. сталь SUS303C/440	1.4125	440C
	вентиляции	Седло	Нерж. сталь SUS420F	1.4028	AISI42F
9	Обратный клапан	CK3MG	Нерж. сталь A351 Gr.CF8	1.4312	-
9	Обратный клапан*** СКF3MG		Нерж. сталь A351 Gr.CF8	1.4312	-

^{*} эквивалентные материалы ** Опция: нерж. сталь *** не показано, модель зависит от присоединения GP10; СК3МG для резьбового, СКF3MG для фланцевого

Copyright © TLV

Расходные характеристики

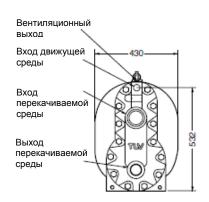
• Корректирующие коэффициенты (для высоты подпора, отличающейся от 860 мм)

1500 1500 Для 1400 Для Графиков Графиков MM 1300 1300 A&B C & D Высота подпора Высота подпора 1200 1200 (минимальная (минимальная 1100 1100 высота высота полпора: подпора: 1000 710 MM) 710 MM) 860 800

ПРИМЕЧАНИЯ:

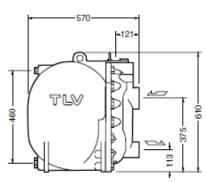
- Обратные клапаны должны быть установлены на входе конденсата в устройство и на выходе.
 Приведенная пропускная способность GP10 соответствует комплектации насоса с обратными клапанами TLV CK3MG или CK3FMG.
- Давление движущей среды минус противодавление должно быть больше, чем 0,5 бар
- В закрытых системах, движущая среда должна быть совместима с перекачиваемой средой. Если в качестве движущей среды используется азот, для правильного подбора насоса необходимо обратится в TLV или к локальному дистрибьютору TLV.
- На линии подачи движущей среды и входе конденсата должны быть установлены фильтры грубой очистки.

• Высота подпора и давления

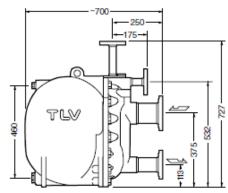

Расход, который обеспечивает насос, рассчитывается исходя из типа движущей среды, давления движущей среды (Pm), и противодавления в конденсатной линии (P_2).

Необходимо, чтобы выполнялись следующие условия:

Расход X Корректирующий фактор > Требуемый расход


Consulting & Engineering Service

Габаритные размеры


Единицы измерения: мм

• Резьбовой *

Вес (кг): 124 (чугун), 136 (сталь) * BSP DIN 2999, другие стандарты по запросу

• Фланцевый **

Вес (кг): 146 (сталь) * BSP DIN 2501, PN25/40, ASME Класс 150 RF, другие стандарты по запросу

Расчет ресивера / резервуара (закрытого конденсатного бака)

Объем ресивера / резервуара должен быть достаточным для накапливания конденсата во время цикла перекачивания насоса **Роментар**. В общем случае ресивер должен быть больше, чем резервуар, так как он должен помещать сразу две среды:

1 Размер резервуара (есть пар вторичного вскипания) (длина 1 метр)

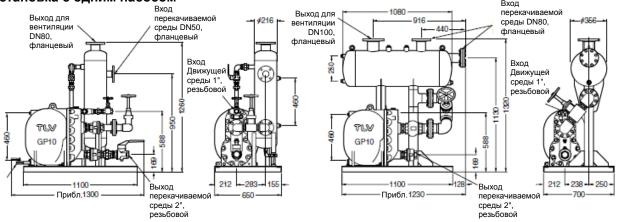

Пар вторичного вскипания (кг/ч)	Диаметр ресивера (мм)	Диаметр вентиляц. Трубы (мм)
25	80	25
50	100	50
75	125	50
100	150	80
150	200	80
200	200	100
300	250	125
400	300	125
500	350	150
700	400	200
800	450	200
1000	500	200
1100	500	250
1400	550	250
1500	600	250

З Если пар вторичного вскипания сконденсировался прежде, чем он образовался в ресивере, необходимо сравнить результаты расчета по обоим таблицам и выбрать большее значение. Размер резервуара (нет пара вторичного вскипания)

Расход конденсата	Диаметр резервуара (мм) и длина (мм)						
(кг/ч)	40	50	80	100	150	200	250
300	1.2 m	0.7					
400	1.5	1.0					
500	2.0	1.2	0.5				
600		1.5	0.6				
800		2.0	0.8	0.5			
1000			1.0	0.7			
1500			1.5	1.0			
2000			2.0	1.3	0.6		
3000				2.0	0.9	0.5	
4000					1.2	0.7	
5000					1.4	0.8	0.5
6000					1.7	1.0	0.6
7000					2.0	1.2	0.7
8000						1.3	0.8
9000						1.5	0.9
10000						1.7	1.0

Длина резервуара может быть уменьшена на 50%, если давление движущей среды (Pm), делённое на противодавление (P_2) равно или больше 2. Pm ÷ $P_2 \ge 2$

Потребление пара / сжатого воздуха (движущей среды)


* Эквивалентный расход воздуха при стандартных условиях (при 20°C и атмосферном давлении)

Consulting & Engineering Service

Готовые системы

Тип S1

Пропускная способность: см. график **©** (без корректирующего коэффициента, максимальная пропускная способность 2 т/ч)

Максимальный расход пара вторичного вскипания: 200 кг/ч

Объем бака: 30 литров

Вес: 300 кг.

Тип М1

Пропускная способность: см. график 🛚 (без корректирующего коэффициента)

Максимальный расход пара вторичного вскипания: 500 кг/ч

Объем бака: 100 литров

Вес: 340 кг.

Установка с двумя насосами насосом

При малом расходе работает один насос Рометткар При увеличении расхода работают оба насоса Рометткая

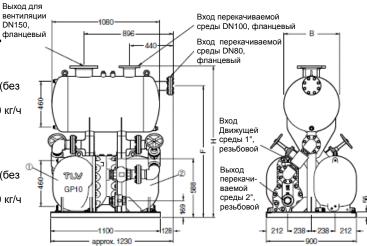
Тип L2

Пропускная способность: двойной расход по графику $\underline{\underline{A}}$ (без корректирующего коэффициента)

Максимальный расход пара вторичного вскипания: 1000 кг/ч

Объем бака: 230 литров

Вес: 570 кг.


Tun E2

Пропускная способность: двойной расход по графику $\underline{\mathbf{A}}$ (без корректирующего коэффициента)

Максимальный расход пара вторичного вскипания: 1500 кг/ч

Объем бака: 330 литров

Вес: 580 кг.

Стандарты:

Резьбовые соединения: BSP DIN 2999 Фланцевые соединения: DIN 2501 PN 25/40 Другие стандарты по запросу. Спецификации могут отличаться от показанных на рисунках. Для консультации рекомендуется обращаться в TLV.

Габаритные размеры

Тип	Ξ	F	φB
L2	1520	1320	560
E2	1620	1420	660

Документ подготовлен официальным дистрибьютором TLV:

Компания: ООО "Паровые системы"

Адрес: г. Санкт-Петербург, ул. Курская, 27 Факс: +7 812 655 08 96, телефон: +7 812 602 77 70

www.steamsys.ru / паровыесистемы.рф

Manufacturer

Kakogawa, Japan is approved by LRQA Ltd, to ISO 9001/14001

Оригинальная версия документа на английском языке опубликована на сайте компании TLV <u>www.tlv.com</u>

Copyright ©TLV (08/2012)

http://www.tlv.com

ISO 9001/ISO 14001