

# TLV POWERTRAP

## модель **GP14L**

#### КОМПАКТНЫЙ НАСОС ДЛЯ УДАЛЕНИЯ И ПЕРЕКАЧИВАНИЯ КОНДЕНСАТА

#### Особенности

Насос для широкого спектра применения, идеален для удаления конденсата из атмосферных конденсатных ресиверов с низким уровнем конденсата.

- Удобен для перекачивания конденсата с высокой температурой без кавитации.
- Не требуется электропитание и средства регулирования уровня, следовательно устройство ВЗРЫВОБЕЗОПАСНОЕ.
- 3. Насос может работать с очень низким уровнем подпора (мин. 300
- Удобный доступ к внутренним деталям уменьшает затраты на 4. обслуживание.
- Внутренние детали из высококачественной нержавеющей стали обеспечивают надежность.
- 6. Компактная конструкция позволяет располагать устройство на ограниченных площадях.
- 7. Опция в виде счетчика импульсов.



#### Основные характеристики

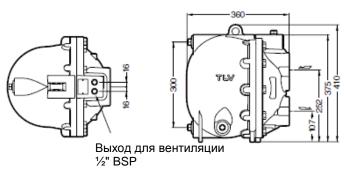
| Модель                                       |                                   | GP14L                                           |  |
|----------------------------------------------|-----------------------------------|-------------------------------------------------|--|
| Присоединение                                | Вход перекачиваемой среды & Выход | Фланцевое *                                     |  |
|                                              | Движущая среда & Вентиляция       | Резьбовое                                       |  |
| Размер                                       | Вход перекачиваемой среды & Выход | 40 x 25                                         |  |
|                                              | Движущая среда                    | 15                                              |  |
|                                              | Вентиляция                        | 15                                              |  |
| Максимальное рабочее давление (МПа изб.) РМО |                                   | 1,4                                             |  |
| Максимальная рабочая температура (°C) ТМО    |                                   | 220                                             |  |
| Диапазон давления движущей среды (МПа изб.)  |                                   | 0,03 – 1,4                                      |  |
| Максимальное допустимое противодавление      |                                   | на 0,05 МПа меньше, чем давление движущей среды |  |
| Объем перекачивания за один цикл (литр)      |                                   | приблизительно 8,0                              |  |
| Движущая среда **                            |                                   | Насыщенный пар, сжатый воздух или азот          |  |
| Перекачиваемая среда ***                     |                                   | Конденсат водяного пара или вода                |  |
|                                              |                                   |                                                 |  |

<sup>\*</sup> Детальную информацию по фланцам см.ниже и справа. \*\* Не допускается применять токсичные,



Для нормальной работы, исключения травм и несчастных случаев, не допускается использовать устройство при значениях рабочих параметров, не входящих в диапазоны, указанные в настоящих технических характеристиках. Региональные нормы и правила могут также ограничивать применение устройства в определенных пределах.

| Nº | Название детали        |        | Материал          | JIS     | ASTM/AISI*  |  |
|----|------------------------|--------|-------------------|---------|-------------|--|
|    | Корпус                 |        | Чугун             | FC250   | A126 CI.B   |  |
| 1  |                        |        | Сталь **          | -       | A216 WCB    |  |
| 2  | Крышка                 |        | Чугун             | FC250   | A126 CI.B   |  |
|    |                        |        | Сталь **          | -       | A216 WCB    |  |
| 3  | Уплотнение крышки      |        | Графит            | -       | -           |  |
| 4  | Поплавок               |        | Нерж. сталь       | SUS316L | AISI316L    |  |
| 5  | Переключающий механизм |        | Нержавеющая сталь | -       | -           |  |
| 6  | Клапан подачи          | Клапан | Нержавеющая сталь | SUS440C | AISI440C    |  |
|    | движущей среды         | Седло  | Нержавеющая сталь | SUS420F | AISI420F    |  |
| 7  | Механизм клапана       | Клапан | Нержавеющая сталь | SUS440C | AISI440C    |  |
|    | вентиляции             | Седло  | Нержавеющая сталь | SUS420F | AISI420F    |  |
| 8  | Обратный клапан CKF5M  |        | Нержавеющая сталь | SUS304  | AISI304     |  |
| 9  | Обратный клапан CKF3M  |        | Нержавеющая сталь |         | A351 Gr.CF8 |  |


<sup>1</sup> МПа=10,197 кг/см<sup>2</sup>

легковоспламеняемые и другие опасные среды.
\*\*\* Не допускается применять жидкости с удельным весом менее 0,8, более 1, а также токсичные, легковоспламеняемые и другие опасные среды. КРИТИЧЕСКИЕ ПАРАМЕТРЫ КОРПУСА (НЕ РАБОЧИЕ ПАРАМЕТРЫ): Максимальное давление (МПа изб) РМА: 1,6 (чугун), 2,1 (сталь) Максимальная допустимая температура (°C) ТМА: 220 (чугун), 260 (сталь)

<sup>\*</sup> эквивалентные материалы \*\* Опция: нержавеющая сталь

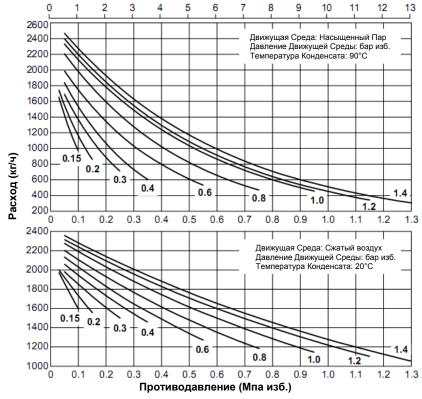
#### Габаритные размеры и вес

Единицы измерения: мм



350-16

Вход движущей среды ½" BSP Вход перекачиваемой среды DN40, PN10/16

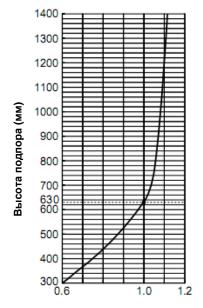

Выход перекачиваемой среды DN25. PN10/16

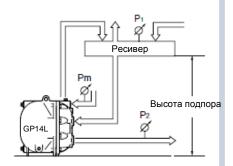
| Вес (кг) |    |
|----------|----|
| Чугун    | 55 |
| Сталь    | 60 |

Примечание: все заглушки ½" BSP

#### Пропускная способность

Присоединение: Фланцевое Вход: DN40 Выход: DN25 Обратный клапан: Вход (CKF5M): DN40 Выход (CKF3M): DN25 Высота подпора: 630 мм





#### Примечания:

- Обратные клапаны должны быть установлены на входе и выходе насоса.
   Обеспечение указанных на диаграммах пропускных способностей GP14L достигается только с применением обратных клапанов TLV CKF53M на входе и CKF3M на выходе.
- Давление движущей среды (Pm) минус противодавление (P<sub>2</sub>) должно быть больше 0.05 МПа.
- В закрытых системах, движущая среда должна быть совместима с перекачиваемой средой. Если в качестве движущей среды используется азот, для правильного подбора насоса необходимо обратится в TLV или к локальному дистрибьютору TLV за консультацией.
- На линии подачи движущей среды и входе конденсата должны быть установлены фильтры грубой очистки.

#### • КОРРЕКТИРУЮЩИЙ ФАКТОР

Для GP10M с высотой подпора, отличающейся от 630 мм (мин. высота подпора 300мм)





Расход, который обеспечивает насос, рассчитывается исходя из типа движущей среды, давления движущей среды (Pm), и противодавления в конденсатной линии (P<sub>2</sub>).

Необходимо, чтобы выполнялись следующие условия:

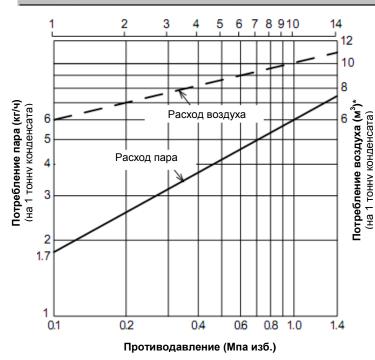
Расход X Корректирующий фактор > Требуемый расход

#### Расчет размера ресивера / резервуара

Объем конденсатного ресивера / резервуара должен быть достаточным для накапливания конденсата во время состояния цикла перекачивания насоса PowerTrap. В общем случае ресивер должен быть больше резервуара, чтобы учитывать объемное расширение за счет пара вторичного вскипания, потому, что в насос должен попасть только конденсат.

## Размер ресивера (с присутствием пара вторичного вскипания) (Длина 1м)

| Пар вторичного<br>вскипания (кг/ч) | Диаметр ресивера<br>мм | Диаметр вент. линии<br>мм |  |  |
|------------------------------------|------------------------|---------------------------|--|--|
| 25                                 | 80                     | 25                        |  |  |
| 50                                 | 100                    | 50                        |  |  |
| 75                                 | 125                    | 50                        |  |  |
| 100                                | 150                    | 80                        |  |  |
| 150                                | 200                    | 80                        |  |  |
| 200                                | 200                    | 100                       |  |  |
| 300                                | 250                    | 125                       |  |  |
| 400                                | 300                    | 125                       |  |  |
| 500                                | 350                    | 150                       |  |  |
| 700                                | 400                    | 200                       |  |  |
| 800                                | 450                    | 200                       |  |  |
| 1000                               | 500                    | 200                       |  |  |
| 1100                               | 500                    | 250                       |  |  |
| 1400                               | 550                    | 250                       |  |  |
| 1500                               | 600                    | 250                       |  |  |


З Если пар вторичного вскипания сконденсировался перед входом в ресивер/резервуар, следует сравнить две таблицы и выбрать больший размер

#### 2 Размер резервуара (без пара вторичного вскипания)

| Расход<br>конденсата | Диаметр резервуара (мм) и длина (мм) |     |     |     |     |     |     |
|----------------------|--------------------------------------|-----|-----|-----|-----|-----|-----|
| (кг/ч)               | 40                                   | 50  | 80  | 100 | 150 | 200 | 250 |
| 300                  | 1.2 m                                | 0.7 |     |     |     |     |     |
| 400                  | 1.5                                  | 1.0 |     |     |     |     |     |
| 500                  | 2.0                                  | 1.2 | 0.5 |     |     |     |     |
| 600                  |                                      | 1.5 | 0.6 |     |     |     |     |
| 800                  |                                      | 2.0 | 0.8 | 0.5 |     |     |     |
| 1000                 |                                      |     | 1.0 | 0.7 |     |     |     |
| 1500                 |                                      |     | 1.5 | 1.0 |     |     |     |
| 2000                 |                                      |     | 2.0 | 1.3 | 0.6 |     |     |
| 3000                 |                                      |     |     | 2.0 | 0.9 | 0.5 |     |
| 4000                 |                                      |     |     |     | 1.2 | 0.7 |     |
| 5000                 |                                      |     |     |     | 1.4 | 0.8 | 0.5 |
| 6000                 |                                      |     |     |     | 1.7 | 1.0 | 0.6 |
| 7000                 |                                      |     |     |     | 2.0 | 1.2 | 0.7 |
| 8000                 |                                      |     |     |     |     | 1.3 | 0.8 |
| 9000                 |                                      |     |     |     |     | 1.5 | 0.9 |
| 10000                |                                      |     |     |     |     | 1.7 | 1.0 |

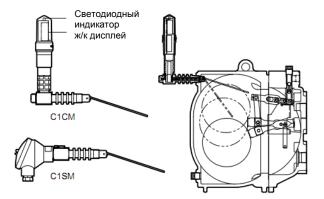
Длина резервуара может быть уменьшена на 50%, если давление движущей среды (Pm), делённое на противодавление (P2), больше или равно 2 (когда Pm / P2  $\geq$  2).

#### Потребление пара / сжатого воздуха (движущей среды)



\* Эквивалентный расход воздуха при стандартных условиях (при 20°C и атмосферном давлении)




### **Consulting & Engineering Service**

#### Опция

На насос GP14L могут устанавливаться один из двух типов счетчиков импульсов для мониторинга количества срабатываний насоса в целях определения периодичности обслуживания, а также для определения расхода перекаченного конденсата.

- С1СМ (комплектный счетчик импульсов) Готовое к работе устройство, включает светодиодный индикатор
- C1SM (счетчик с клеммной коробкой) Для возможности удаленного мониторинга.

Доступны версия во взрывозащищенном исполнении. См. соответствующее описание



Документ подготовлен официальным дистрибьютором TLV:

Компания: ООО "Паровые системы" Адрес: г. Санкт-Петербург, ул. Курская, 27 Факс: +7 812 655 08 96, телефон: +7 812 602 77 70

www.steamsys.ru / паровыесистемы.рф

Manufacturer







Оригинальная версия документа на английском языке опубликована на сайте компании TLV <u>www.tlv.com</u>