

КОНДЕНСАТНЫЙ НАСОС

МОДЕЛЬ **GP10L** ИЗ ЧУГУНА ИЗ УГЛЕРОДИСТОЙ СТАЛИ

КОМПАКТНЫЙ НАСОС ДЛЯ СБОРА И ПЕРЕКАЧИВАНИЯ КОНДЕНСАТА

Особенности

Насос для широкого спектра применения, идеален для удаления конденсата из атмосферных конденсатных ресиверов с низким уровнем конденсата.

- Удобен для перекачивания конденсата с высокой температурой без кавитации.
- Не требуется электропитание и средства регулирования уровня, следовательно устройство ВЗРЫВОБЕЗОПАСНОЕ.
- Насос может работать с очень низким уровнем подпора.
- Удобный доступ к внутренним деталям уменьшает затраты на обслуживание.
- Внутренние детали из высококачественной нержавеющей стали обеспечивают надежность.
- Компактная конструкция позволяет располагать устройство на ограниченных площадях.

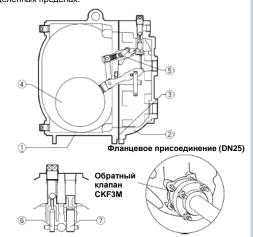
Основные характеристики

Модель		GP10L		
Присоединение	Вход перекачиваемой среды & Выход	Резьбовое BSP DIN2999 1)	Резьбовое BSP DIN2999 ¹⁾ / Фланцевое ²⁾ DIN2501 ¹⁾	
	Движущая среда & Вентиляция	Резьбовое BSP DIN2999 ¹⁾		
Размер	Вход перекачиваемой среды & Выход	1½" x 1"	1" / DN25 x 1" / DN25	
	Движущая среда	1/2"		
	Вентиляция	1/2"		
Максимальное р	абочее давление (бар изб.) РМО	10,5		
Максимальная рабочая температура (°C) ТМО		185		
Диапазон давления движущей среды (бар изб.)		0,3 – 10,5		
Максимальное допустимое противодавление		на 0,5 бар меньше, чем давление движущей среды		
Объем перекачивания за один цикл (литр)		приблизительно 6		
Движущая среда ³⁾		Насыщенный пар, сжатый воздух или азот		
Перекачиваемая среда ⁴⁾		Конденсат водяного пара или вода		

¹⁾ Другие стандарты по запросу 2) PN10, 16 (стальной также PN25), детальную информацию по фланцам см.ниже и справа.

1 бар=0,1МПа

Максимальное давление (бар изб) РМА: 13 (чугун), 21 (сталь) Максимальная допустимая температура (°C) ТМА: 200 (чугун), 220 сталь.



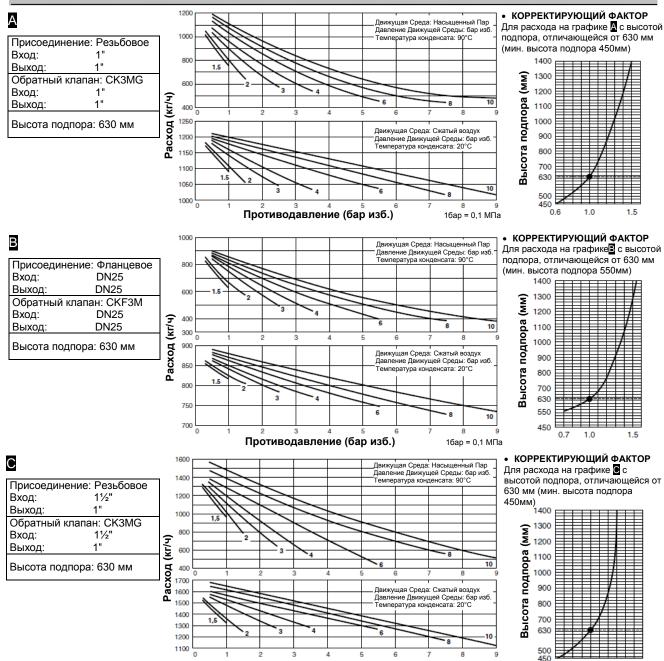
ВНИМАНИЕ

Для нормальной работы, исключения травм и несчастных случаев, не допускается использовать устройство при значениях рабочих параметров, не входящих в диапазоны, указанные в настоящих технических характеристиках. Региональные нормы и правила могут также ограничивать применение устройства в определенных пределах

Nº	Название детали		Материал	DIN*	ASTM/AISI*
_	Корпус		Чугун FC250	1.6025	A126 CI.B
1			Сталь A216 Gr.WCB**	1.0619	-
2	Крышка		Чугун FC250	1.6025	A126 CI.B
			Сталь A216 Gr.WCB**	1.0619	-
3	Уплотнение крышки		Графит	-	-
4	Поплавок		Нерж. сталь SUS316L	1.4404	AISI316L
5	Переключающий механизм		Нержавеющая сталь	-	-
6	Клапан подачи	Клапан	Нерж. сталь SUS440C	1.4125	AISI440C
	движущей среды	Седло	Нерж. сталь SUS420F	1.4028	AISI420F
7	Механизм клапана вентиляции	Клапан	Нерж. сталь SUS440C	1.4125	AISI440C
		Седло	Нерж. сталь SUS420F	1.4028	AISI420F
8	Обратный клапан ***	CK3MG	Сталь A351 Gr.CF8	1.4312	-
		CKF3M	Сталь A351 Gr.CF8	1.4312	-

^{*} эквивалентные материалы ** Опция *** не показано на рисунке, модель обратного клапана зависит от присоединения насоса: CK3MG для резьбового, CKF3M для фланцевого

Copyright © TLV


³⁾ Не допускается применять токсичные, легковоспламеняемые и другие опасные среды.

⁴⁾ Не допускается применять жидкости с удельным весом менее 0,8, более 1, а также токсичные, легковоспламеняемые и другие опасные среды. КРИТИЧЕСКИЕ ПАРАМЕТРЫ КОРПУСА (НЕ РАБОЧИЕ ПАРАМЕТРЫ):

Consulting & Engineering Service

Пропускная способность насоса

Противодавление (бар изб.)

Примечания:

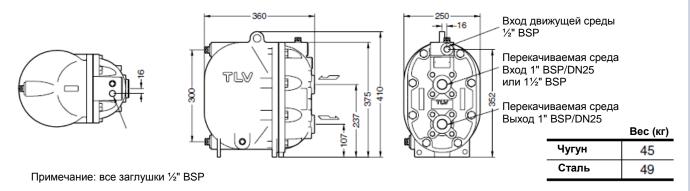
- Обратные клапаны должны быть установлены на входе и выходе насоса. Обеспечение указанных на диаграммах пропускных способностей достигается только с применением обратных клапанов TLV CK3MG и CKF3M.
- Давление движущей среды (Pm) минус противодавление (P₂) должно быть больше 0,5 бар.
- В закрытых системах, движущая среда должна быть совместима с перекачиваемой средой. Если в качестве движущей среды используется азот, для правильного подбора насоса необходимо обратится в TLV или к локальному дистрибьютору TLV.
- На линии подачи движущей среды и входе конденсата должны быть установлены фильтры грубой очистки.

• ВЫСОТА ПОДПОРА И ДАВЛЕНИЯ

1бар = 0,1 МПа

Расход, который обеспечивает насос, рассчитывается исходя из типа движущей среды, давления движущей среды (Pm), и противодавления в конденсатной линии (P_2).

0.6


1.0

Необходимо, чтобы
Высота подпоравыполнялись следующие
условия:

Расход X Корректирующий фактор > Требуемый расход

Consulting & Engineering Service

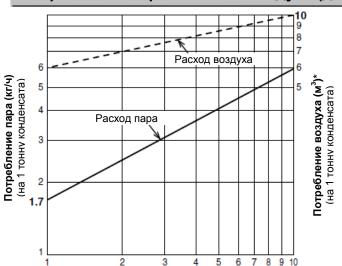
Габаритные размеры и вес

Расчет размера ресивера / резервуара

Объем конденсатного ресивера / резервуара должен быть достаточным для накапливания конденсата во время состояния цикла перекачивания насоса PowerTrap. В общем случае ресивер должен быть больше резервуара, чтобы учитывать объемное расширение за счет пара вторичного вскипания, потому, что в насос должен попасть только конденсат.

Размер ресивера (с присутствием пара вторичного вскипания) (Длина 1м)

Пар вторичного вскипания (кг/ч)	Диаметр ресивера мм	Диаметр вент. линии мм		
25	80	25		
50	100	50		
75	125	50		
100	150	80		
150	200	80		
200	200	100		
300	250	125		
400	300	125		
500	350	150		
700	400	200		
800	450	200		
1000	500	200		
1100	500	250		
1400	550	250		
1500	600	250		

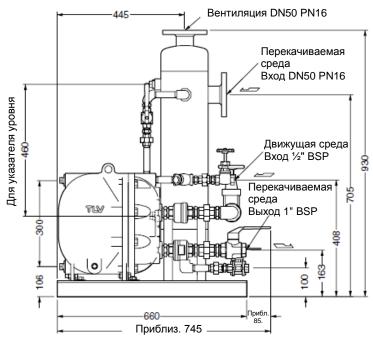

З Если пар вторичного вскипания сконденсировался перед входом в ресивер/резервуар, следует сравнить две таблицы и выбрать больший размер

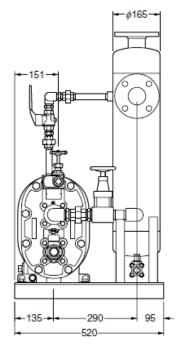
2 Размер резервуара (без пара вторичного вскипания)

Расход конденсата	Диаметр резервуара (мм) и длина (мм)						
(кг/ч)	40	50	80	100	150	200	250
300	1.2 m	0.7					
400	1.5	1.0					
500	2.0	1.2	0.5				
600		1.5	0.6				
800		2.0	8.0	0.5			
1000			1.0	0.7			
1500			1.5	1.0			
2000			2.0	1.3	0.6		
3000				2.0	0.9	0.5	
4000					1.2	0.7	
5000					1.4	0.8	0.5
6000					1.7	1.0	0.6
7000					2.0	1.2	0.7
8000						1.3	0.8
9000						1.5	0.9
10000						1.7	1.0

Длина резервуара может быть уменьшена на 50%, если давление движущей среды (Pm), делённое на противодавление (P_2), больше или равно 2 (когда Pm / $P_2 \ge 2$).

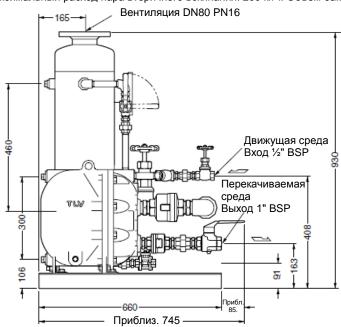
Потребление пара / сжатого воздуха (движущей среды)

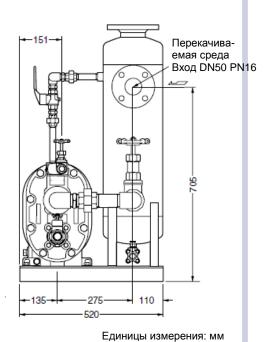

Противодавление (бар изб.) 1бар = 0,1 МПа


* Эквивалентный расход воздуха при стандартных условиях (при 20°С и атмосферном давлении)

Насосная установка (Открытая система) *

Одинарная установка Тип S1L


Расходные характеристики: см. диаграмму № (корректирующий фактор не применяется,, макс. расход 1 т/ч) Максимальный расход пара вторичного вскипания: 100 кг/ч. Объем бака 12 л. Вес: 120 кг



Одинарная установка Тип S1M

Расходные характеристики: см. диаграмму ☑ (корректирующий фактор не применяется,, макс. расход 1,5 т/ч) Максимальный расход пара вторичного вскипания: 200 кг/ч. Объем бака 22 л. Вес: 130 кг

Стандарты: Фланцевые со

Фланцевые соединения: DIN 2501 Резьбовые соединения: DIN 2999

Другие стандарты по запросу

* Установки другой конфигурации и для других параметров по запросу.

Документ подготовлен официальным дистрибьютором TLV:

Компания: ООО "Паровые системы"

Адрес: г. Санкт-Петербург, ул. Курская, 27 Телефон / Факс: +7 812 655 08 95 / +7 812 655 08 96

www.steamsys.ru / паровыесистемы.рф

Manufacturer

CO., LTD.

Kakogawa, Japan is approved by LRQA Ltd. to ISO 9001/14001

Оригинальная версия документа на английском языке опубликована на сайте компании TLV <u>www.tlv.com</u>

Copyright © TLV (04/2012)

http://www.tlv.com